Intel® Dlstrlbutlon for Python*
Scaling HPC and Big Data

Sergey Maidanov

Software Engineering Manager for
Intel® Distribution for Python*

Quick Facts

e Released Intel® Distribution for Python™* in Sep’16

e QOut-of-the-box experience in HPC and Data Science, pip and conda support
* Near-native performance for Linear Algebra, initial optimizations in FFT and NumExpr
* Introduced TBB for threading composability, random_intel for fast RNG, pyDAAL

Update release in Oct’16

Greater compatibility with Anaconda*
* Performance and usability enhancements
* Neural networks support in pyDAAL
* Docker images

Update 2 release in Feb’17

Memory optimizations in NumPy
Umath optimizations in NumPy
NumPy and SciPy FFT improvements
Scikit-learn optimizations

New pyDAAL features

What Problems We Solve:

intel) .l
%& =c2 < Scalable Performance

HPC/Big Data Cluster

\ % 7
ER Development cost

PrOtOtyPlng Development cost Production

High migration '
costs

Make Python usable beyond prototyping environment by
scaling out to HPC and Big Data environments

3-10x

and more |

Ope nMP?,

What Problems We Solve:
Ease of Use

intel' Developer Zone

powered by Google

Development » Tools » Resources »

Home > Forums > Intel® Software Development Products > Intel® Math Kernel Library

|ntel Developer Zone

powered by Google

compiling and linking MKL with numpy/scipy

Development » Tools » Resources »

Xavier Barthelemy Tue, 11/22/2011 - 1528

[]
- dear everyone,

Iam hard trying to compile numpy / and scipy with mkl.

Numpy/Scipy with Intel® MKL and Intel® Compilers
By Vipin Kumar E K (Intel), Added June 28, 2012 | Translate >

" » Join Today > Log in
lnlel Developer Zone | Join Today > |

powered by Google

unfortunately it does notwork. i have tried a lot of solution, and the closest for me to work is:

Development » Tools » Resources »

“Any articles | found on your site that
related to actually using the MKL for
compiling something were overly

technical. I couldn’'t figure out what By Yuan C. (nie, Addea Fepruary 12, 2015 | Transiae >

the_ heck some of the things were Earcaes
doing or talking about.” - e« parael studgio Bkl

NumPy/SciPy Application Note Library

Y Building Numpy/Scipy with Intel® MKL and Intel® Compilers on
Windows

2015 Beta Survey Response

Step 1 - Overview

This guide is intended to help current NumPy/SciPy users to take advantage of Intel® Math Kernel Library
(Intel® MKL), Intel® Fortran and Intel® C++ Compilers on Microsoft Windows platform

Why Yet Another Python

Distribution?

Mature AVX2 instructions based product New AVX512 instructions based product

Intel® Xeon® Processors Intel® Xeon Phi™ Product Family

Python* Performance as a Percentage of C/Intel® MKL for Python* Performance as a Percentage of C/Intel® MKL for
Intel® Xeon® Processors, 32 Core (Higher is Better) Intel® Xeon Phi™ Product Family, 64 Core (Higher is Better)
100%

100%
90% 90%
80% 80
70% 70
60% 60
50% 50
40% 40
30% 10
20% 20
10% . 10% I
®5 - - L -. . | — [S
dot lu det inv - w o T

2R 2R 2 R 2

0%
holesk fft
G cholesky fft

mapt/atlas mpip/openblas = Intel Python/MKL mapt/atlas mpip/openblas m Intel Python/MKL

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017;. Hardware: Xeon: Intel
Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Scaling To HPC & Big Data

Environments

« Hardware and software efficiency crucial in production (Perf/Watt, etc.)

« Efficiency = Parallelism

— Instruction Level Parallelism with effective memory access patterns
— SIMD

— Multi-threading
— Multi-node

Roofline Performance Model* Intel® Advanced Vector Extensions Evolution of Multicore

K f?ﬁ‘: : 8X peak FLOPs over 4 generations
| i .
“Peak Gflop/s Y d
S
e‘b\/ I
-

/e’b
{0\W Arithmetic Inten:
\\J Stencils BLAS3 Parti

BLAS1 SpMV. EET Methods

Many Core

m

Multi Core

Dual Core
Hyper- g
threading e
Single
Core =

2011 2012 2013 2002 2006 2008 2011

Gflop/s

* Roofline Performance Model https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Intel® Xeon Phi™ x200

(Knights Landing) processor

Architectural Enhancements = ManyX Performance

Based on
Intel® Atom™ core (based
on Silvermont microarchitecture)
with Enhancements for HPC

Q 60+ cores !
High-

v' 14nm process technology / 3+ Teraﬂops1 Performance DDR4
Memory

v' 4 Threads/Core / 3x Single_ over X
v' Deep Out-of-Order Buffers Thread? STREAM vs. DDR4’ Capacity
v’ Gather/Scatter Comparable

2-D Core Mesh to Intel®

v’ Better Branch Prediction Xeon®

v' Higher Cache Bandwidth Cache Coherency Processors

...and many more

Integrated Fabric

Core Server Processor

From SSE or AVX to AVX-512:

Setting Right Expectations

e 2x vector length is typically <2x performance boost
— Applications have scalar sections, so are subject to Amdahl’s Law

— Some applications are limited by access to data
* If throughput bound, MCDRAM may help
* If latency bound, prefetching may help
— Loops may need larger trip counts to get full benefit

* @Gains from newly vectorized loops can be large

* Application hotspots may change significantly between AVX and
AVX512 codes

Efficiency = Parallelism

CPython as interpreter inhibits parallelism but...
... Overall Python tools evolved far toward unlocking parallelism

Packages (numpy?*,
scipy*, scikit-learn*,
etc.) accelerated with
MKL, DAAL, IPP

Language extensions
for vectorization &
multi-threading
(Cython*, Numba*)

Composable multi-
threading with Intel®
TBB and Dask*

Integration with Big Data
platforms and Machine
Learning frameworks
(pySpark*, Theano*,
TensorFlow?*, etc.)

Multi-node
parallelism with

mpidpy* accelerated
with Intel® MPI*

Mixed language
profiling with Intel®
VTune™ Amplifier

Out-of-the-box performance with
accelerated numerical packages

Widespread optimizations in

NumPy & SciPy FFT

Up to 60x improvement in FFT for the range of different use cases in NumPy and SciPy

FFT Performance Improvements
Intel(R) Distribution for Python* 2017 Update 2/Update 1

60

50

40

30

20

B I I I

0 | | . — — | | — —
] < < I 0] < < I 0 <t <t o]] < <t 0
5 © 2 g S 5 < 2 g S < g 2 S s 2 g S
x [} © @© x x [} o ®© X] © @© x x © © x
@ = 2 2 @ Q@ = 2 ° Q@ = 2 2 Q@ Q@ 2 2 Q@
ol £ [[ro% ol £ [[ol £ [[ol o [[ol
€ o IS IS o 1S o IS £ €
o o o o o o () o o
(&) o (&) (&) (&) (&) o

2D FFT 2D FFT 2D FFT 2DFFT FFTRow | FFT Col FFT Col = FFTRow = FFT Col 2D FFT 2D FFT 2D FFT 2DFFT FFTRow FFTCol @ FFTRow FFT Col ND FFT

Inplace = Inplace Inplace = Inplace Inplace Inplace | Inplace Inplace | Inplace

NumPy NumPy NumPy NumPy NumPy NumPy NumPy NumPy NumPy SciPy SciPy SciPy SciPy SciPy SciPy SciPy SciPy SciPy

Memory optimizations for

NumPyv arravs

* Optimized array allocation/reallocation, copy/move
* Memory alignment and data copy vectorization & threading

Memory optimizations for NumPy
Intel(R) Distribution for Python* 2017 Update 2 vs. PSF*

50
40
20
10

0

Time
w
o

bench_io.Copy. time_memcpy- bench_io.CopyTo. time_copyto bench_io.CopyTo.
complex128 time_copyto_sparse

Benchmark

B PSF IDP 2017U2

1.6

1.4

1.2

=

0.8

Intel Theano speedup
due to memory optimizations for NumPy

DBN-Kyoto RNNSLU Word Embeddings RNNSLU Word Embeddings LSTM-Sentiment-Analysis

401

Optimizations for NumPy

umath functions

* Optimized arithmetic/transcendental expressions on NumPy arrays

Up to 400x better performance due to vectorization & threading
180x speedup for Black Scholes formula due to umath optimizations

NumPy Umath Optimizations
Intel(R) Distribution for Python* Update 2/PSF

NumPy Umath functions

200

150

100

50

0

Black Scholes Formula
Effect of NumPy Optimizations

S S X S R S S S W S S S S 9
& S F (S S PSS S O
N7 AT T Y S P
R SR SN

e J] - Numpy a2 - Numpy

Choosing right alternative for the
best parallelism

Benchmark: Black Scholes

Formula

* Problem: Evaluate fair European call- and F,:_Ji=Sc,-CDF[::’I]—E"'T-X-CDF{&E_]

put-option price, V,, and V,,, for
underlying stock Vou=€ " -X-CDF(-d,)-S,-CDF(-d,)
 Model Parameters:
— S, - present underlying stock price ;’S 2
— X -strike price lﬂL %,)+(r+gé]i"
— o -stock volatility d, = J\H{T

— r—risk-free rate

— T - maturity ln{g%f)+(r —FZ)T

* In practice one needs to evaluate many d,
(nopt) options for different parameters oT

Good performance benchmark for stressing VPU and memory

0.0965 6 def black_scholes { nopt, price, strike, t, rate, wvol, call, put }:
7 mr = -rate
: : = * *
0.096 ‘ g sig sig two = wvol * wol * 2
1@ for i in range(nopt):
0.0955 11 P = fleoat{ price [1i])
12 S = strike [i]
0.095 13 T =1t [i]
14
15 a = log(P / 5)
p 00945 16 b=T%*mr
2 17
0.094 18 z =T %* sig sig two
19 c =8.25 % z
0.0935 28 y = l/sgrt(z)
21
0.093 22 Wl =(a-b+c)*y
23 w2 =(a-b-c)*Fy
24
0.0925 25 dl = 8.5 + 8.5 * erf(wl)
26 d2 = 8.5 + 8.5 * erf(w2)
0.092 27
SR IIBAIRIBIRANSISI IS I |28 Se = exp(b) * 5
O O O d MmO N 1N O 4 N 1N 4 m O N <
NS e8I ERSSRT S|
- N1 O O 9 m N In o |38 call [i] = P * d1 - Se * d2
I N < 0 O on N~ . .
— o © |31 put [i] = call [i] - P + Se

Variant 2: NumPy* arrays and

Umath functions

500 & def black_scholes (nopt, price, strike, t, rate, wol):
7 mr = -rate
450 B sig sig two = vol * wol * 2
S
400 1@ P = price
11 5 = strike
350 12 T=t
13
300 450 14 g = log(P / 5)
- 15 b=TF%mr
S 250 MOPS 16
S 17 z =T * sig sig two
200 18 c = ?.25 *z
19 y = invsgqrt(z)
28
150 21 wl=1(a-b+c)*y
22 w2 =(a-b-c)*y
100 23
24 dl = 8.5 + 8.5 * erf(wl)
50 25 d2 = @.5 + 8.5 * erf(w2)
26
0 27 Se = exp(b) * 5
X D o NV o> (D Lo AV AN o© N (™ 28
VM DO O L9 A0° (5 VWY A AT O Q7 AV DY g0
RN AN G i A S T call = P * dl - Se * d2
AL S S RN A 38 put = call - P + Se
31
32 return call, put

Variant 3: NumExpr* (proxy for

Umath implementation)

2 import numexpr as ne
500 3
4 def black_scholes (nopt, price, strike, t, rate, wvol):
450 5 mr = -rate
6 sig sig two = wvol * wol * 2
7
400 3 P = price
9 5 = strike
18 T=t
350 11
440 12 a = ne.evaluate("log(P / 5) ")
300 13 b = ne.evaluate("T * mr ")
14
4 MOPS 15 z = ne.evaluate("T * sig sig two ")
g 250 16 c = ne.evaluate("8.25 * z ")
17 = ne.evaluate("1l/sqrt(z) ")
200 18
19 wl = ne.evaluate("(a - b +) * y ")
28 w2 = ne.evaluate("(a - b -) * y ")
150 21
22 dl = ne.evaluate("@.5 + 8.5 * erf(wl) ")
100 23 d2 = ne.evaluate("@.5 + 8.5 * erf(w2) ")
24
25 Se = ne.evaluate("exp(b) * 5 ")
27 call = ne.evaluate("P * dl - Se * d2 ")
28 put = ne.evaluate("call - P + Se ™)
0 29
X D o v o™ © AV N> D A O B o N >
RS ’LQV b‘QO) ‘b\’q (of,)‘b ’{,\‘o c)"?) '\9’\ ’\:\?‘ &ﬁb Cg;\ /\,\io &,)Q q;oQ /\,»'\, Vb?’ q;b‘o 38 return call, put
© ©7 VT P N B AN NS 31
y > % '\,‘0 P 6\ 32 ne.set_num_threads(ne.detect_number_of_cores())
33 base_bs_erf.run{"Numexpr”, black_scholes)

Variant 4: NumExpr* (most

performant)

1400
1 import base_bs erf
2 impert numexpr as ne
1200 :
4 def black_scholes (nopt, price, strike, t, rate, vol):
5 mr = -rate
b sig sig two = vol * vol * 2
1000 7 5218
1200 B P = price
E| 5 = strike
800 MOPS poT=t
L 1
S 2 call = ne.evaluate("F‘ * (8.5 + 0.5 *erf((log(P /5) -T *mr+" +
600 3 "8.25 * T * sig sig twe) * 1/sqri(T * sig sig two))) - S * exp(T * mr)*" +
1< "(8.5 + 0.5 * erf({log(P / S) - T *mr - 8.25 * T * sig sig two) *" +
5 "L/sqre(T * sig_sig two))) ")
400 6 put = ne.evaluate("call - P + 5 * exp(T * mr) ")
7
3 return call, put
200
0
> D o oV VR) v O o N (&
&S q”\Q’ oy S S S W
S I S S A LSRN . R P (LI gt
P A0y SRR AN P

4000

3500

3000

2500

2000

MOPS

1500

1000

500

3400
MOPS

© N @A D PP e D P
NI A R N
O RDT AT P LN

SR &

28 [iboundscheck(False)

21 fiwraparound (False)

22 [@cdivision(True)

23 @initializedcheck(False)

24 def black_scholes(int nopt,

33 cdef
34 cdef
35 cdef
36 cdef
37 cdef

39 with

double[:] price,
double[:] strike,
double[:] t,
double rate,
double wol,
double[:] call,
double[:] put):

int 1

double P, 5, @, b, z, ¢, Se, vy, T
double di, d2, wl, w2

double mr = -rate

double sig_sig two = wvol * wol * 2

nogil, parallel()
for 1 in prange(nopt):
price [i]

S = strike [1]

T =+ [i]

a = log(P / 5)
b=T%mr

z =T * sig_sig two

c =@.,25 * z

y = Lisgrt(z)

wl =(a -b+c) *y

w2 =(a -b-c)*y

dl = 8.5 + 8.5 * erf(wl)
d2 = @.5 + 8.5 * erf(w2)

se = exp(b) * 5

call [i] = P * d1 - 5e * d2
put [i] = call [i] - P + Se

i@ =) Variant 5: Native C/C++ vs.

Python variants

5000

4000

3000

MOPS

2000

1000

Composable parallelism

@ D

Composable Multi-Threading
With Intel® TBB

 Amhdal’s law suggests extracting parallelism at
all levels

* If software components do not coordinate on
threads use it may lead to oversubscription

* Intel TBB dynamically balances HW thread loads
and effectively manages oversubscription

* Intel engineers extended Cpython* and Numba*
thread pools with support of Intel® TBB

>python —-m TBB myapp.py

Application

kages

pyDAAL

Application
Joblib
Dask

TBB

Python pac

MKL DAAL

Native libs

Composable Multi-Threading Example:

Batch QR Performance

vimport time, numpy as np

.X = np.random.random((100000, 2000))
10 = time.time()

.q, r = np.linalg.qr(x)

-test = np.allclose(x, q.dot(r))
.assert(test)

;print(time.time() - to@)

+import time, dask, dask.array as da

. X = da.random.random((100000, 2000),

; chunks=(10000, 2000))
.10 = time.time()

:q, r = da.linalg.qr(x)

«test = da.all(da.isclose(x, g.dot(r)))
;assert(test.compute()) # threaded
sprint(time.time() - t0)

TBB-
composable
nested
Speedup relative to Default Numpy®* parallelism }
.
Lax App-level
1.2x parallelism |

only
1.0x Over-

[. 4
0.8x subscription /7
.
0.6x Numpy 1 / | Dask

0.4x 1.00x 1.46x

Dask : Dask
0.61x m 0.89x

0.0x GCCl

Intel® MKL, Intel® MKL,
OpenMP* threading Serial

0.2x

Intel® MKL,
Intel® TBB threading

System info: 32x Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel(R) MKL 2017.0 Beta Update 1 Intel(R) 64 architecture, Intel(R) AVX2;
Intel(R)TBB 4.4.4; Ubuntu 14.04.4 LTS; Dask 0.10.0; Numpy 1.11.0.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source:
Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Machine Learning

Skt-Learn* Optimizations With

Intel® MKL

Speedups of Scikit-Learn Benchmarks
Ox Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

8x
7x

6x
o Effect of optimizations

ax in NumPy* and SciPy*

3x

2x
Ox
Approximate Fast K-means GLM net LASSO Lasso path Leastangle Non-negative Regression by Sampling SVD
neighbors regression, matrix SGD without
OpenMP factorization replacement

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands
and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

More Scikit-Learn* optimizations

with pyDAAL

* Accelerated key Machine Learning algorithms with Intel DAAL

e Distances, K-means, Linear & Ridge Regression, PCA
* Upto 160x speedup on top of MKL initial optimizations

Scikit-Learn Optimizations
Due to Intel(R) DAAL

180.00

158.91 157.94
160.00
140.00
120.00
100.00
80.00
60.00
39.65
40.00
20.00
2.56 . 539 1.57
1Kx150K 1Kx150K 100Kx50, 10 clusters 10Mx25, training 10Mx25, training 1Mx50, 3 components
Correlation Distance Cosine Distance K-means Linear Regression Ridge Regression PCA

M Intel Python 2017 U2 vs. U1

Why you may need pyDAAL in
addition to Scikit-learn

@ NP Z e Ideas Behind Intel® DAAL:

Heterogeneous Analytics

« Datais different, data analytics pipeline is the same

« Data transfer between devices is costly, protocols are different
— Need data analysis proximity to Data Source
— Need data analysis proximity to Client
— Data Source device # Client device
— Requires abstraction from communication protocols

Data Source Edge Compute (Server, Desktop, ...) Client Edge

Analysis Modeling Validation Decision Making
Py
R
- Il
. e? .. % ul Il.
Decompression, Aggregation, Summary Statistics Machine Learning (Training) Hypothesis testing Forecasting
Filtering, Normalization Dimension Reduction Clustering, etc. Parameter Estimation Model errors Decision Trees, etc.

Simulation

Features, p

|

||
Memory
Capacity

J

Observations, n
Time
B Numeric
Categorical

Blank/Missing
M Outlier

Ideas Behind Intel® DAAL: Effective Data Management,

* Streaming and Distributed Processing

Big Data Attributes Computational Solution

*Distributed processing with communication-avoiding
algorithms

Distributed across different devices

*Distributed processing
*Streaming algorithms

Huge data size not fitting into device
memory

*Data buffering & asynchronous computing
*Streaming algorithms

Data coming in time

*Categorical>Numeric (counters, histograms, etc)
*Homogeneous numeric data kernels
* Conversions, Indexing, Repacking

Non-homogeneous data

*Sparse data algorithms
*Recovery methods (bootstrapping, outlier correction)

Sparse/Missing/Noisy data

Ideas Behind Intel® DAAL:

Storage & Compute

* Optimizing storage # optimizing compute

Storage: efficient non-homogeneous data encoding for smaller footprint and faster retrieval
Compute: efficient memory layout, homogeneous data, contiguous access

Easier manageable for traditional HPC, much more challenging for Big Data

Storage Memory
H_ . EE ©EE
a H EN BN B HEEEm
- | . |
E [| |
o9 =B H | n
=N . o
]
>] . u
u u u u Filtering, Data homogenization
1] conversions, and blocking
! basic statistics
Samples, n

DAAL DataSource DAAL NumericTable DAAL Algorithm

Ideas Behind Intel® DAAL:
Languages & Platforms

@ D

DAAL has multiple programming language bindings

¢ C++ —ultimate performance for real-time analytics with DAAL

« Java*/Scala* - easy integration with Big Data platforms (Hadoop*, Spark*, etc)
* Python* — advanced analytics for data scientist

SEETKE

= a[a[azlg]
@ python’

Performance profiling with
Intel® VTune™ Amplifier

TeDh o Profiling Python* code with Intel®

d \d) 2 Do VTune™ Amplifier

* Right tool for high performance application profiling at all levels

* Function-level and line-level hotspot analysis, down to disassembly
* (Call stack analysis

* Low overhead

* Mixed-language, multi-threaded application analysis

* Advanced hardware event analysis for native codes (Cython, C++, Fortran) for cache misses, branch misprediction,

etc.
Profiling technology Event Instrumentation Sampling, hardware events
Analysis granularity Function-level Line-level Line-level, call stack, time windows,
hardware events
Intrusiveness Medium (1.3-5x) High (4-10x) Low (1.05-1.3x)

Mixed language programs Python Python Python, Cython, C++, Fortran

i@ Intel’ VTune™ Amplifier XE

1. Get a quick snapshot

Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were
considered running if they are either actually running on a CPU or are in the runnable state in the O5 scheduler, Essentially, Thread Concurrer
that were not waiting. Thread Concurrency may be higher than CPU usage if threads are in the runnable state and not consuming CPU time.

155- T T
12s ' g:
w :
E 95- EI
E bs EE
2 Iy
o 3z g:
O 3 1 5 6

Simultanecusly Running Threads

Intel” VTune™ Amplifier XE
2. ldentify Hotspots

rd00hs r03cc r002hs r001hs Solution Explorer -

8| Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ Intel VTune Amplifier XE 2016

& Analysis Target ; Analysis Type| | B® Collection Log| | M Surmmary) Rl d BTl | #'s Caller/Callee| | #¢ Top-down Tr

Function [Call Stack wi o |La| |G %€ Data Of Interest (CPU Metrics) '

CPU Time ~ B Viewing 4 10f 30 b selected stack(s)

Grouping:

Function / Call Stack Effective Time by Utilization 32.0% (21665 of 6.7675)
@ die @ Poor @Ok @ Ideal @ Over analyze_locks.exelgrid_intersect - grid.cpp
Elgrid_intersect 6.767s Il
r:a_IE ere 4 EDES analyze_locks.exelshader+0x39¢ - shade.cpp:139
" trace - shade_reflectfl 1.474< [analyze_locks.exelrender_one_..0x163 - analyze_locks.cpp:106

~ render_one_pixel < dff 0.741s [l analyze_locks.exeldraw_task:o. 0x18f - analyze_locks.cppi173

. grid_intersect 02455 [l analyze_locks.exeltbbuinterfac.. t> >+ 384 - partitioner.h:257

[sphere_intersect 3-??5‘5.:_ analyze_locks.exel[TBE parallel..ask]+0x33 - parallel_for.h: 108

Egrid bounds_intersect 0.4145 ([tbb.dIN[TEE Dispatch Loop]+0x1b8 - custom_scheduler.h:441
#GdipDrawlmagePointRec E?j:i:' thb.dllltbb:internal:allocate. yrallocate+ (B4 - task.cppdl

Hottest Functions Hottest Call Stack

Intel” VTune™ Amplifier XE

3. Look for common patterns

e Q- S5s Thread

B Running
S;alncRTStartup (0x2cd 1 waits
[ik TP Time
OMP Worker Thread #1 Transitions

(0x1790)

CPU Usage

Alule CPU Time
Thread Concurrency
Uik Concurrency

OMP Worker Thread #2
(0:228c)

Thread

Coarse Grain

Locks i
Thread Concurrency

= b

T T T T
[l Tottetd 2.865 287 2.88s 2.89s

mainCRTStartup (0:23f || L
@ L N

OMP Worker Thread #1

' mine Uk CPU Ti
CLLI I IR TTNTT TP ’ {1 HII" = ;me
1 i [l AL IRILTTT AT (IR i renstens
I OC = [OMP Worker Thread 52 il M iy T ow
(0x1550) HE R e Il g Bl g CPU Time

WL i i Thread Concurrency

| ik Concurrency
et H
Thread Concurrency

- B

OMP Worker Thread #3
(0x3234)

Contention

Concurrency

T
Qb 14s A i E 4 2 ==t
B Running

mainCRTStartup (el cc
41

OMP Waorker Thread #1
(0:1624)
OMP Worker Thread 2
(025c4)
OMP Worker Thread #3
(0x2074)

Load
Imbalance

Thread

Concurrency

CPU Usage

Thread Concurrency :

< »

Adjust Data Grouping

Function - Call Stack

Module - Function - Call Stack
Source File - Function - Call Stack

Thread - Function - Call Stack

... (Partial list shown)

Double Click Function
to View Source

Click [+] for Call Stack

Filter
by Timeline Selection
(or by Grid Selection)

Zoom In And Filter On Selection

Filter In by Selection m

Remowve All Filters

Intel” VTune™ Amplifier XE

Navigation through your code

LRSI analyze_locks.cpp Solution Explorer -

P9 Basic Hotspots Ho

Intel VTune Amplifier XE 2016

& Ana get Analysis Collection Log | | A S v ECREECIENY | +% Caller/Callee| [o% T Tree| | B Platfor ¥
Grouping: | Function / Call Stack v L |G | Data Of Interest (CPU Metrics) W
CPU Timew ~ Mt Viewing 4 10f 24 b selected stack(s)
Function / Call Stack Effective Time by Utilization o 4.7% (1.0135 of 2.922)
Spin Time| ¢ rror
Dldle @ Poor [Ok @ Ideal analyze_locks.exelgrid_intersect - grid.cpp ~
grid_intersect 2.922s _ 0s . .
here int + 2236 0 analyze_locks.exelinters..x1f - intersect.cpp:114
+ sphere_intersec 236 DI s
Ffunc@0x6b29dd6S 0.0105]| 11325 analyze_locks.exelshader+ (%346 - shade.cpp:139
MsgWaitForMultipleObjects 0.016s| 0.504s analyze locks.exeltrace+(x2e - trace rest.cpp:77
[# grid_bounds_intersect 0153 0= analyze_locks.exelrende... analyze locks.cpp:101
[# GdipDrawlmageP ointRect| 0.099s 0s analyze_locks.exeldraw_..- analyze_locks.cpp:168
Btri_intersect 007350 Os analyze_locks.exeltbbui..x21c - partitioner.h:257
5 i .
:ro;lg-rld gﬁsl gs analyze_locks.exe![TBBE p...29 - parallel_for.h:108
ight_intersect .048s 3
LS Selected 1 = 2022 0 analyze_locks.exeltbb:i...0xBa - parallel_for.h:24
elected 1 row(s): 9225 5w
< s < analyze_locks.exelthrea...- analyze locks.cpp:205
QEQFQ-Qe Thread v

ad

*

threadstartex (TID: 204... [+] @ Running

threadstartex (TID: 182... [+] duk CPU Time

thread_video (TID: 271... ik Spin and Ov...

[[]= CPU Sample

WinMainCRTStartup (... [v] CPU Usage
func@0x1000c10 (TID... [v] ik CPU Time

Wk Spin and Ov...
CPU Usage

— W Tuning Opportunities Shown in
Pink. Hover for Tips

>

3

Summary And Call To Action

* Intel created the Python* distribution for out-of-the-box performance and
scalability on Intel® Architecture
— With minimum to no code modification Python aims to scale

« Multiple technologies applied to unlock parallelism at all levels
— Numerical libraries, libraries for parallelism, Python code compilation/JITing, profiling
— Enhancing mature Python packages and bringing new technologies, e.g. pyDAAL, TBB
« With multiple choices available Python developer needs to be conscious what

will scale best
— Intel® VTune™ Amplifier helps making conscious decisions

Intel Distribution for Python is free!
https://software.intel.com/en-us/intel-distribution-for-python
Commercial support included for Intel® Parallel Studio XE customers!

Easy to install with Anaconda* https://anaconda.org/intel/

https://software.intel.com/en-us/intel-distribution-for-python
https://anaconda.org/intel/

